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(Coskey, 2011)

Structurally complex horst and graben systems

DJ Basin Cross Section
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DJ Basin Stratigraphic Column
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The age of the Niobrara Formation is Coniacian to 
Campanian of the Late Cretaceous (Around 82-89 mya)

(Modified from Sonnenberg et al., 2016)
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Western Interior Seaway
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Modified from Roberts and Kirshbaum (1995) 
and Finn and Johnson, (2005)
Depositional patterns from Longman et al. 
(1998)

Paleogeographic reconstruction 
of the Western Interior Seaway 
during the Coniacian-Santonian 
time of the Late Cretaceous. 
Arrows showing depositional 
patterns studied by Longman et 
al. in 1998.

Boreal Water Mass

Tethyan Water Mass

Warm
Saline
Oxygen-Poor
Carbonate-Rich

Cool
Brackish
Oxygen-Rich
Carbonate-Poor

Paleogeographic distribution of 
geographic limits during the 
Santonian (Upper Niobrara 
Interval) showing the maximum 
transgression and regression.

(Blakey, 2014) 



Type Well Razor 25-2514H
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B1 Chalk: 5,613-5,639 ft TVD

B2 Chalk: 5,645-5,678 ft TVD 
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Western Interior Seaway Cycles
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Modified from Drake and Hawkins (2012) who modified  from Longman et al. (1998)

Sequence Boundary

Sequence Boundary

First 3rd Order 
Cycle
89.9-~88.2Ma

Second 3rd Order 
Cycle
~88.2-~86 Ma

Third 3rd Order 
Cycle
~86-84.6 Ma

Fourth 3rd Order 
Cycle
84.6-~82.8Ma

HST

HST

TST

TST

TST
HST

TST

HST

Sharon Springs

Niobrara Formation Top

Niobrara A Chalk              
Niobrara A Chalk Base
Niobrara B1 Chalk

Niobrara B1 Chalk Base
Niobrara B2 Chalk

Niobrara B2 Chalk 
Base

Niobrara C Chalk

Niobrara C Chalk Base

Niobrara D

Fort Hays Limestone

Codell Sandstone
Carlile

Deposition during a marine transgressive cycle (Niobrara Cyclothem)



Nio B1 Structure Map
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In Redtail Field the Niobrara Formation is 
at a depth of -700-1,250ft subsea. 

266 wells used

Three wells shown in red have core that 
fully includes the B1 and B2 intervals and 
are: Razor 25-2514H, Horsetail 19N-1924M, 
and Cottonwood 08E-0504.

Two wells shown in purple have core that 
partially includes the study interval  and 
they are: Razor 26J-2633L and Wildhorse 
16-13L.

These well cores were provided by Whiting 
Oil and Gas Corporation.

Wildhorse 16-13L

Razor 25-2514H

Razor 26J-2633L

Horsetail 19N-1924M

Cottonwood 08E-0504



Nio B2 Chalk Isopach Map

9B1 thin is compensated by thicker B2. 

Niobrara B2 has a variable thickness in the field ranging from 24-43 ft.

Niobrara B2 Chalk Top

Niobrara B2 Chalk Base



Nio B1 Chalk Isopach Map
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B1 Chalk has a variable thickness in the field ranging from 20-35 ft. 
The dark blue spot is the location of the Razor 26J-2633L well. The thickness of the other interval 
seem appropriate and my current theory is that there is a fault that thinned the Nio B1.

Niobrara B1 Chalk Top

Niobrara B1 Chalk Base



CORE DESCRIPTIONS
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Core
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Used the chalk and marl classification 
system as defined by the Colorado School 
of Mines Niobrara Consortium to identify 
four facies in the Niobrara B interval in the 
Razor 25-2514H well.

After Sonnenberg (2012)

Facies 1

Facies 2

Vertical 
Calcite 
Filled 
Fractures

Planar 
Laminations

Razor 25-2514H Core provided by Whiting Oil and Gas 
Corporation and cored by Core Lab Petroleum Services

Core descriptions from 5,679-5,610 ft MD 

Depth correction is 
log = core – 5 ft



Facies 1
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• Homogenous chalk with few minor clay 
drapes

• Contains white speckles in core that are  
foraminifera with calcite rinds

• There are few layers of oyster shell hash 
and inoceramids

• The majority of the styolites in the B 
interval are located within this facies

Calcite Filled 
Stylolite

Large 
Stylolite

Small 
Stylolite

Broken 
Inoceramid 
Shell

Clay Drape

Foraminifera 
Speckles



Facies 2
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• Planar laminated chalks and marls 
that are interbedded with some clay 
drapes

• Rare wavy beds but, overall the beds 
are planar 

• Contains white speckles in core that 
are foraminifera and copepod pellets

• Oysters shells and oyster shell hash 
present

• Most common facies through the B1 
and B2 intervals

Oyster 
Shells/ 
Oyster 
Shell Hash

Planar 
Bedding and 
Laminations

Inoceramid 
Shell

Pyrite Layer

Broken 
Inoceramid 
Shell

Oyster Shells

Clay Drapes



Facies 3
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• Dark grey argillaceous chalk
• Most prevalent at the top and bottom 

of the B1 and B2 chalk intervals in the 
transition zones

• Contains more clay content with 
planar laminations and some 
interbedded chalk

• Contains thin pyrite beds and nodules
• Some bentonite layers

Pyrite Layer

Planar 
Laminations

Bentonite 
Bed

Planar 
Bedding



Facies 4
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• Overall is a mainly structureless marl with 
some planar laminations

• Is a darker grey than the argillaceous 
chalk to almost black in color

• Is very fractured in core and appears in 
the marl benches

• Contains thin pyrite beds and nodules
• Has some bioturbation

Crushed 
Inoceramid 
Shell

Bioturbation

Pyrite Nodule

Planar 
Lamination



Core Description/ Stratigraphic Column
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If any one wants a more detailed zoomed in version, ask 
me and I will send it to you 



PYROLYSIS DATA
RAZOR 25-2514H
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Pyrolysis Data
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Modified Van Krevelen Diagram Kerogen Type and Maturity
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Source Potential Logs
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XRF DATA RAZOR 25-2514H
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Razor 25-2514H Potassium-Thorium Cross Plot
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• Majority of the measurements indicate a 
montmorillonite (bentonite) with some kaolinite

• Nio B2 has more heavy Th-bearing minerals 
compared to Nio B1 and the marls

• Nio B1 is clays mainly consist of montmorillonite

• Th measured using XRF is fairly inaccurate and is 
the reason for a lot of (0) readings

• Further analysis using XRD will aid in supporting 
this conclusion

Kaolinite

Mixed Layer Clays

Illite
Micas

K-Feldspar

Montmorillonite

Heavy Th-
bearing minerals

(Template from Schlumberger, 1985)

Nio B1
Nio B2
Marls
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B1 Chalk

B2 Chalk

Razor 25-2514H
B1 Chalk: 5,608-5,635 ft MD

B2 Chalk: 5,641-5,674 ft MD 

B1 Chalk

B2 Chalk

B1 Chalk

B2 Chalk

Facies 1
Facies 2
Facies 3
Facies 4

Decrease in Depth
• Increase in Si
• Decrease in Ca



Razor 25-2514H Elemental Cross Plots
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R² = 0.8427

0

50000

100000

150000

200000

250000

300000

0 20000 40000 60000 80000 100000 120000

Si
 (p

pm
)

Al (ppm)

Si vs Al

R² = 0.8069

0

4000

8000

12000

16000

20000

0 20000 40000 60000 80000 100000 120000

K 
(p

pm
)

Al (ppm)

K vs Al

R² = 0.3333

0

20000

40000

60000

80000

100000

120000

0 100000 200000 300000 400000 500000

Al
 (p

pm
)

Ca (ppm)

Al vs Ca

R² = 0.4539

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000

Sr
 (p

pm
)

Ca (ppm)

Sr vs Ca

B1 R2= 0.7449
B2 R2=0.9022

B1 R2= 0.5287
B2 R2=0.8836

B1 R2=0.2923
B2 R2= 0.6636

B1 R2=0.39
B2 R2=0.2952 Al vs. Ca cross plot has a 

negative correlation which 
indicates that the Al is 
detrital. Ca is mainly 
biogenic, but since the trend 
is a little scattered part, of 
the calcium could was 
formed in an authigenic 
process.

Si vs. Al cross plot shows 
a great correlation and 
indicates that the silicon 
content is detrital 
sourced. 

K vs. Al cross plot 
shows a good 
correlation and is due 
to the large amount of 
both elements in clay.

Sr vs. Ca cross plot has 
a good correlation and 
indicates that there is 
no aragonite 
enrichment present.

Nio B1 Nio B2 Marls



Razor 25-2514H Redox Trace Elements

28

S vs. Mo shows a weak 
positive covariance 
which indicates the 
relationship to pyrite 
through Mo-Fe-S 
compounds during 
authigenic enrichment.

Mo vs. V show a 
moderate covariance 
indicating similar 
authigenic enrichment 
pathways and further 
supports deposition in 
anoxic waters.

Al vs. Cr show a 
moderate correlation 
indicating Cr enrichment 
that can be attributed to 
the detrital component 
in addition to authigenic 
enrichment through 
redox processes.

S vs. V has a weak 
correlation which 
indicates that the V 
enrichment can possible 
follow pyrite 
precipitation. 

(Tribovillard et al., 2006)
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Razor 25-2514H Redox Elements
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• Molybdenum is found concentrated in sediments that are associated with marine anoxic conditions (Bertine, 1972). 
Mo indicates authigenic enrichment in anoxic waters.

• Increasing amounts of Mo as move up section into Nio B1 indicates that the Nio B1 was deposited in more anoxic 
conditions than the Nio B2.
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Future Work
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• Adjust well log formation tops using a model created using XRF data and 
core descriptions

• Figure out why the Nio B1 have a larger detrital component than Nio B2
• Core descriptions on Horsetail 19N-1924M and Cottonwood 08E-0504
• Create thin sections for Razor 25-2514H and run Field Emission Scanning 

Electron Microscope (FE-SEM) scans
• XRD on Razor 25-2514H
• Work with NMR logs to decide if recorded permeability in the area for the 

Niobrara is too high
• Create pay zone maps based of resistivity well logs
• Determine undrilled potential areas and whether the Niobrara B1 or B2 

chalk should be the targeted interval
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